
Computer Organization and Architecture: A Pedagogical Aspect

Prof. Jatindra Kr. Deka

Dr. Santosh Biswas

Dr. Arnab Sarkar

Department of Computer Science & Engineering

Indian Institute of Technology, Guwahati

Lecture – 20

Design of Hardwired controlled Control Unit

Welcome to the 6th unit of the module. Here, we will be discussing mainly the design of

hardwired control unit.

(Refer Slide Time: 00:38)

If you look at the last few units we are basically discussing that basically for a macro

instruction, what are the microinstruction; and for each microinstruction what are the basic

control signals required; and how they can be generated or for each given micro instructions

what are the control signals to be generated; and what is the proper sequence for that.

Then, now onwards we will be basically looking at how we can generate that. What are the

basic circuits or what are the basic techniques of basically generating those control signals. As

we have already discussed in the summary of the module that basically there are two types of

manner in which we can generate the control signals: one is actually called the hardwired which

we are going to do today and another is basically called micro program based.

627

So, one is a hardware based and one is a software based. So, in this unit basically we will be

focusing on the hardware based control unit in which there will be a dedicated hardware which

is hardcoded and which will generate the control sequences or control signal sequences based

on the control instructions.

(Refer Slide Time: 01:31)

So, basically if we will first look at the unit summary; we know that basically there is a set of

micro-instructions for given any set of macro instructions. Then basically what happens we

have seen that for a given instruction; there is fetch, decode and execute there are sequence of

micro-instructions corresponding to each phase and for each of the micro instruction there is a

sequence of control signals to be generated like program counter out memory address register

in set the read mode to the memory, then wait for the memory to give a signal that it is ready

etcetera.

So, basically depending on each of the cycles that is we have seen there is some steps like in

step 1, 2, 3 basically corresponds to a fetch of the instruction after that it basically corresponds

to the execution of an instruction.

So, based on each of the phase or each of the steps we have to generate the signals control

signals. So, how we can generate them there can be basically two approaches: one is called

hardwired and another one is called the micro programmed. In hardwired basically, what is

going to happen; we will have a dedicated finite state machine which will move from one state

to another. And each state will correspond to one time step of the micro instruction or one time

628

step or one micro-instructions basically and the control signals vary then whenever you move

from one state to the another state it is basically nothing but one step of the micro instruction

to the another microinstruction. Basically, we have seen that first three are basically

corresponding to this fetch of an instruction. So, first three states of the finite state machine

will be corresponding to the fetch phase and basically whatever signal it is like, 𝑃𝐶𝑜𝑢𝑡, 𝑀𝐵𝑅𝑖𝑛,

make read etcetera will be the output of the corresponding final state machine based states,

because we know that in this unit basically, if you have forgotten you have to basically revise

the concepts of designing of Mealy and Moore machine given a truth table implementation.

Then you have to understand and recollect from your digital design fundamentals; that how a

finite state machine can be implemented and based on some inputs how the outputs can be

generated.

So, in our case the inputs will be nothing but the different states output of the instruction register

then flag registers and some signals which will be coming from the data which will be coming

from the bus that is your signals from the external memory etcetera and then it will generate

some outputs which will be corresponding to each state. As I told you each state corresponds

to a step or a micro instruction and the output will be the signals and this is actually hardwired,

why we call it hardwired; because corresponding to each macro instructions we know what are

the micro-instructions.

We will generate a finite state machine and it will be hardcoded, but the same thing can also

be done using a software approach; which is called the micro program based which we will

look at later, but in this case basically everything is hardwired in terms of the finite state

machine states. So therefore, actually we call it as a hardwired design and in fact, a hardwired

control we have to generate design the finite state machine in terms of gates and flip flops. So,

basically as I told you we have to again recollect, but given a sequence of inputs and outputs

and states we have to recollect how a finite state machine is designed.

629

(Refer Slide Time: 04:31)

Basically as I told you the inputs are from the instruction register control flags and status

registers and control flags some external signals and the control step counter; that is very

important what is a control step counter it is nothing but if you have a finite state machine

which goes from one step to another so, also you have to know that what are the values of the

state variables at that state. That will also depend on like for example, in this state the variables

are say all zero. So, the output will also depend on the value of the present state which is a very

standard terminology, when you are saying FSM implementation in terms of circuits.

The outputs are of course, the different control signals which go to the CPU and the memory.

So, based on the your instruction register, external signals condition code; that is your flag and

control step counter; control step counter is nothing but the your state in which you are in, the

decoder or the encoder that is the your which is going to generate the signal for that based on

all the input to the decoder or there will be decoder encoder combination; that is a sequential

sorry a combinational circuit will be there which will generate the enable signals control signals

at each of the finite state machine based state.

So, in nutshell what we are going to see today? We are going to see different type of instructions

and the micro-instructions there in we will see and then we will see how a finite state machine

is designed which is hardcoded, because anyway a finite state machine is hardcoded because

that is not flexible and how it generates the corresponding control signals; that is what is the

summary of this unit?.

630

So, what are the object unit objectives?

(Refer Slide Time: 05:55)

At this unit you will be able to this is an analysis objective you will be able to associate the

control signals by looking at the control steps of each instruction that is the micro instruction

and the processor and to implement the control signal by digital logic circuit. That means,

basically you just if you look at the sequence of micro-instructions and the control signals there

in you will be able to basically associate for which state what are the signals will be there; and

how the finite state machine can be designed.

So, again for this basic design of finite state machine we will not be covering in this unit;

because it corresponds to your digital design fundamentals. So, if some truth table is given so,

how you design a finite state machine in terms of gates and flip flops that you have to recollect

that. And finally, there is a design objective design the design issues and implementation of the

control unit. So, if I give you a macro instruction you will be able to design the finite state

machine based controller for that, that is what is the idea. So, now, let us go into the unit.

631

(Refer Slide Time: 06:51)

So, basically this is; what is your block diagram of a hardwired control unit? So, what is there

as I already told you the heart of the input is instruction register because you will have an

opcode and then the operands see the opcode will basically tell you, what is the correct

instruction? And what are the control signals required for that?

For example, if it is a load instruction you will have different, if it is the store instruction it will

be different; that means, the micro-instructions corresponding to that. So, if it is the fetch part

then some different step has to be done if it is add, you are really going to add the two operands

then different I mean different step has to be done. So, all these things will be basically

controlled by the opcode which will be in the instruction register.

So, that is the heart of the controller the control unit then of course, here the external inputs.

So, what are the external inputs like your memory block is saying that I have already done with

the reading or writing part; then you can access my memory data register. So, that is; what.

There are some condition codes so these condition codes basically are you can understand that

this is something like your flags basically the flag registers.

So, the flag registers will directly tell you that whether the 0 flag is set, the sign flag is set

etcetera. So, those inputs also has to be taken if it is a conditional instruction because

conditional instructions will always depend on inputs of the flag registers you can consider this

as the flag register and finally, there is something called a control step counter that is step 1,

632

step 2, step 3 some step there may be an if then else condition like; if 0 is set you do something

else.

So, the finite state machine implementation also the state the state bits will also give this as an

input, taking all these inputs basically you are going to generate some control signals which

are going to control generate the control signals. These signals are like 𝑃𝐶𝑜𝑢𝑡 1, 𝑃𝐶𝑖𝑛 1 there

may be memory register out one etcetera. So, basically or add 1 subtract 1 I mean multiplexer

bit select 0 or 1.

So, all this things will be generated by looking at all the inputs. So, these were already we have

discussed like 𝐼𝑅, external inputs and conditional codes here one important thing is that; as you

have to go in steps like 𝐴𝐷𝐷 𝑅1, 𝑅2 say 5 steps are there 𝐴𝐷𝐷 𝑅1, 𝑀 may be 6 stages will be

there. So, there will be a finite state machine which will be involving this 6 stages and all these

and also depending on what state you are the control signals will change. So, that state variable

as an input will be given by the control step counter and of course a clock will be driving it

because it is a finite state machine.

So, now basically if such an input is given like I have inputs external conditions, control step

stuff then how you can design this decoder or how you can design FSM out of it is a standard

digital design procedure which we have to read which you might have already read in your

digital design fundamentals and you have to recollect them back that is a finite state machine

synthesis, you can use any kind of flip flop like JK, SR, D whatever you require accordingly

you can design the circuit.

633

(Refer Slide Time: 09:37)

So, basically whatever I told you can read through over this slide it says that hardwired control

unit is a sequential state machine; that is the finite state machine which will generate the

sequence of controls.

As it is a finite state sequential machine which is hardcoded. So, we actually call it as a

hardwired control unit; because once the finite state machine is synthesised you cannot change

that and the output of the finite state machine basically will generate different control signals

which will be given to the ALU, the read or write part of the CPU sorry write part of the

memory block etcetera.

And of course, you can tell add or subtract or multiply etcetera to be done for example, they

have given a simple example say when you want to read an instruction to 𝐼𝑅 from the memory.

So, generally write 𝑀𝐷𝑅𝑜𝑢𝑡 𝐼𝑅𝑖𝑛; that means, basically we are saying that memory has already

given the value to the memory buffer register or the data register, then I can actually put it into

the instruction register say may be it is happening at state number 3.

So, basically what is happening at state number 3 basically the output will be 𝑀𝐷𝑅𝑜𝑢𝑡 = 1

and 𝐼𝑅𝑖𝑛 that signal will be equal 1 all other control signals will be equal to 0. So, basically in

this case we just need to depend there is no input responsible here we just need to see the

control bits or the state variables for state number three should match and then you can easily

generate out the signal.

634

So, in this at for this simple thing that the 𝑀𝐷𝑅𝑜𝑢𝑡 and 𝐼𝑅𝑖𝑛 there is no required to think about

any inputs in this case, unlike for some other cases like where you have to wait for the input

signal that the memory is ready. So, may be at some other stage from coming from here to here

with 𝑊𝐹𝑀𝐶 = 1. So, we have just waited that 𝑀𝐹𝐶 is 1; that means, the memory he has

already told that whatever data you are asking from the memory has already being dumped to

the memory data register and now you can read it.

So, by getting this input signal you come over here this is an input and is does not have any

output correspondingly, but at this stage what happens you just need to know that I am in state

3 that just depend on the state variables and just generate the output 𝑀𝐷𝑅𝑜𝑢𝑡 = 1 and

instruction register equal to in. So, basically in this case only your hardwired control unit will

depend on the state variables as the input, it is just a very straight example to show basically

how it works.

(Refer Slide Time: 11:50)

And then basically what happens we will finally have a decoder encoder and series of flip flops

which will design the basic circuit which will take all this inputs and generate the corresponding

output signals and in the proper sequence of steps of a finite state machine. So, it’s a finite state

machine based synthesis you have to run as I again repeating in the inputs are 𝐼𝑅, condition

bits flags, status registers, and basically your control step counter.

Control step counter is nothing, but your steps of the finite state machine the outputs will be

basically your some control signals which will be giving it to the different parts of the code

635

like your ALU, memory read etcetera. Again now so, this is actually very straight forward

whatever I have discussed I have written in this slide you can go through it; then what are the

advantages of a hardwired control unit it is the speed.

So, whenever you have something implemented in hardware it is extremely fast, disadvantage

is that basically it is hardcoded that is you cannot change. So, given a micro instruction set or

a macro instruction the corresponding micro instruction is what is very very hardcoded. When

we will be going for the micro program based control you will find out that is slightly slower,

but there is lot of flexibility there. So, that you can appreciate only when we will be discussing

in the micro program based control unit, for the time being just understand that as this is the

hardwired based implementation low flexibility a disadvantage, but fast implementation is the

advantage.

(Refer Slide Time: 13:11)

So, again slightly more detailed diagram basically what happens. So, there is something called

the instruction register. So, the instruction register actually we will feed to a instruction decoder

basically this is this part is nothing, but your opcode. So, it one it is going to tell you that say

if it is a load instruction or if it is a add instruction which finite state machine basically you

have to choose; because for load there will be a separate finite state machine for add there will

be a several finite state machine, because a load means a series of micro-instructions for that

fetch the instruction in instruction register then you will decode and load means you have to

again look at the memory and dump the value. So, we have already seen that for a 𝐿𝑂𝐴𝐷 𝑅1, 𝑅2

636

and for a 𝐿𝑂𝐴𝐷 𝑅1, 𝑀 the sequence of micro-instructions will be different. So, based on the

opcode or if it’s an add instruction etcetera.

So, based on the opcode it will give the inputs to a decoder the decoder will actually make the

corresponding one bit as high. So, if there are M instructions. So, it will be a decoder of M and

input will be 𝑙𝑜𝑔2𝑀̅. So that means, the idea is say for example, if there are 64 bit 64

instructions possible then 25. So, there will be actually 5 bits will be your opcode. So, opcode

can generate sorry 25 is 32, 26 is 64.

So, basically sorry this 64 six bit input. So, you can generate all the numbers from 0 to 26. So,

it will generate all the numbers this is 6 bit. So, you can generate all numbers from 000000 to

all 1’s correspondingly basically it will generate, this is a decoder. So, any out of any 1 bit out

of the 64 inputs will be 1 which will correspond to the micro instruction or basically the finite

state machine corresponding to that macro instruction say for example, for load maybe the

opcode is all zeros.

So in fact, it will first make this bit as 1 and the 𝐼𝑁𝑆1 will actually invoke the finite state

machine corresponding to the load may be 1, 1, 1, 1, 1, 1, 1, 1 is the opcode for the instruction

and then whenever all the 𝐼𝑅 will give the value of 1, 1, 1, 1, 1, 1 where it will go to the

instruction decoder it will make 𝐼𝑁𝑆𝑀 = 1; then 𝐼𝑁𝑆𝑀 = 1 this bit will correspond to the

encoder it will actually activate the finite state machine which corresponds to the micro-

instruction implementation for add instruction that way it goes external inputs are always

similar as I told you they have nothing to change; that is your instructions or signals from your

process memory etcetera condition codes are the flag registers which will be given to the

encoder and this is the step decoder step decoder is nothing but 𝑇1, 𝑇2 𝑢𝑝 𝑡𝑜 𝑇𝑛.

So, 𝑇1, 𝑇2, . . 𝑇𝑛 are basically the steps. So, for example, if you are at state 0 𝑇1 will be high, if

you are at state one 𝑇2 will be high and so forth or you can even think of a binary encoding like

for example, if the state 0 is there all 𝑇𝑛’s will be 0, if it is state 1 so it will be 0, 0, 0, 0, 1. So,

that can be a binary coding or it can be a hot one encoding kind of a thing like in state 1 it is a

1 in state 2 it is a 1 and so, forth.

So, any way it is encoding is the way to minimize the circuit for, but for explanation just you

can understand that for given any state a proper encoding will go in, step controller is counter

is basically it basically generates the movement in the finite state machine. Taking all these

637

inputs it will generate the control signals so. In fact, what happens then? In a nutshell your

instruction register will give the opcode corresponding to an instruction, based on that any one

of the signal will be made high that corresponds to the macro instruction, based on this you

will invoke the finite state machine which will correspond to that macro instruction and then

you will move through the sequences of steps based on the external inputs and the condition

codes and as well as the steps. Because step 1 some instruction some of signals will be

generated, step 2 some instruction will be generated; and it will keep on actually moving 1, 2,

3, 4, 5, 6 if there is an if then else condition then you can have to move from one state to another

but otherwise there is an incremental value of the steps.

So, I have written that basically in the text you can read over it. So, what it says that?

(Refer Slide Time: 17:26)

The opcode will actually generate signals 𝐼1 to 𝐼𝑚. So, if there are m signals based on opcode

any one of them will be high and that will actually invoke the corresponding finite state

machine. Correspondingly then the decoder examines the signal and accordingly the relevant

control signals are made high by the encoder. In fact, actually it will select a corresponding

finite state machine.

Say for example, they are saying that the current instruction is 𝑘. So, that is 𝐼𝑁𝑆𝑘 will be

invoked for example, that is what is saying 𝐼𝑁𝑆𝑘 is invoked. So, if the if the 𝑘 instruction then

this is going to be invoked and then let us say that assume that you are in 𝑇1 = 1; that means,

may be this is we are in the first stage. So, whenever 𝐼𝑁𝑆𝑘 = 1 so that means, the 𝑘-th

638

instruction corresponds to the opcode of the current instruction which is in the instruction

decoder. So, 𝐼𝑁𝑆1 will be the 1 by the decoder.

So, when it is the case the corresponding finite state machine like we will have lot of states in

this. So, this one is going to be invoked and may be you are in state S0, then whenever I will

move to state this is 𝑇0 assume this is 𝑇1, then at time 𝑇1 first in after first step I will go to 𝑇1

and may be in that state basically you are going to take appropriate actions like you can make

the 𝑀𝐷𝑅𝑜𝑢𝑡 to 𝐼𝑅𝑖𝑛; that is you are going to read the signal some steps can happen. So,

basically this how it happens; so, corresponding to the 𝐼𝑁𝑆; that is instruction type based on

the opcode of corresponding state machine will be invoked that is you are going to the initial

state.

After that depending on the depending on this one that is your step controller you will go to

step 1, step 2, step 3 and that way, may be in this state you will not have any input you just

generate 𝑀𝐷𝑅𝑜𝑢𝑡 and 𝐼𝑅𝑖𝑛. So, that is corresponding signals will be generated and we will go

forth. So, that is how it basically happen; you can read the slide and also I have explained you.

So, basically you can get a very quick understanding what is happening, whenever you are

going to now take some concrete examples which will make this step absolutely clear.

Only thing you remember that based on the opcode only one bit for the corresponding

instruction will be made high, that finite state machine will be invoked and after that you will

go step 1, step 2, step 3 based on the counter that is your stage counter we call it that is your

step counter and then at each step you are going to read some flag values some input values

some other values and you are going to generate the corresponding control signal that is how

it happens.

Now, we will take some very concrete examples and the thing will become very very clear for

us.

639

